↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
div_in_gga(X, s(Y), Z) → U3_gga(X, Y, Z, le_in_gga(s(Y), X, B))
le_in_gga(0, Y, true) → le_out_gga(0, Y, true)
le_in_gga(s(X), 0, false) → le_out_gga(s(X), 0, false)
le_in_gga(s(X), s(Y), B) → U1_gga(X, Y, B, le_in_gga(X, Y, B))
U1_gga(X, Y, B, le_out_gga(X, Y, B)) → le_out_gga(s(X), s(Y), B)
U3_gga(X, Y, Z, le_out_gga(s(Y), X, B)) → U4_gga(X, Y, Z, if_in_ggga(B, X, s(Y), Z))
if_in_ggga(false, X, s(Y), 0) → if_out_ggga(false, X, s(Y), 0)
if_in_ggga(true, X, s(Y), s(Z)) → U5_ggga(X, Y, Z, minus_in_gga(X, Y, U))
minus_in_gga(X, 0, X) → minus_out_gga(X, 0, X)
minus_in_gga(s(X), s(Y), Z) → U2_gga(X, Y, Z, minus_in_gga(X, Y, Z))
U2_gga(X, Y, Z, minus_out_gga(X, Y, Z)) → minus_out_gga(s(X), s(Y), Z)
U5_ggga(X, Y, Z, minus_out_gga(X, Y, U)) → U6_ggga(X, Y, Z, div_in_gga(U, s(Y), Z))
U6_ggga(X, Y, Z, div_out_gga(U, s(Y), Z)) → if_out_ggga(true, X, s(Y), s(Z))
U4_gga(X, Y, Z, if_out_ggga(B, X, s(Y), Z)) → div_out_gga(X, s(Y), Z)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PrologToPiTRSProof
div_in_gga(X, s(Y), Z) → U3_gga(X, Y, Z, le_in_gga(s(Y), X, B))
le_in_gga(0, Y, true) → le_out_gga(0, Y, true)
le_in_gga(s(X), 0, false) → le_out_gga(s(X), 0, false)
le_in_gga(s(X), s(Y), B) → U1_gga(X, Y, B, le_in_gga(X, Y, B))
U1_gga(X, Y, B, le_out_gga(X, Y, B)) → le_out_gga(s(X), s(Y), B)
U3_gga(X, Y, Z, le_out_gga(s(Y), X, B)) → U4_gga(X, Y, Z, if_in_ggga(B, X, s(Y), Z))
if_in_ggga(false, X, s(Y), 0) → if_out_ggga(false, X, s(Y), 0)
if_in_ggga(true, X, s(Y), s(Z)) → U5_ggga(X, Y, Z, minus_in_gga(X, Y, U))
minus_in_gga(X, 0, X) → minus_out_gga(X, 0, X)
minus_in_gga(s(X), s(Y), Z) → U2_gga(X, Y, Z, minus_in_gga(X, Y, Z))
U2_gga(X, Y, Z, minus_out_gga(X, Y, Z)) → minus_out_gga(s(X), s(Y), Z)
U5_ggga(X, Y, Z, minus_out_gga(X, Y, U)) → U6_ggga(X, Y, Z, div_in_gga(U, s(Y), Z))
U6_ggga(X, Y, Z, div_out_gga(U, s(Y), Z)) → if_out_ggga(true, X, s(Y), s(Z))
U4_gga(X, Y, Z, if_out_ggga(B, X, s(Y), Z)) → div_out_gga(X, s(Y), Z)
DIV_IN_GGA(X, s(Y), Z) → U3_GGA(X, Y, Z, le_in_gga(s(Y), X, B))
DIV_IN_GGA(X, s(Y), Z) → LE_IN_GGA(s(Y), X, B)
LE_IN_GGA(s(X), s(Y), B) → U1_GGA(X, Y, B, le_in_gga(X, Y, B))
LE_IN_GGA(s(X), s(Y), B) → LE_IN_GGA(X, Y, B)
U3_GGA(X, Y, Z, le_out_gga(s(Y), X, B)) → U4_GGA(X, Y, Z, if_in_ggga(B, X, s(Y), Z))
U3_GGA(X, Y, Z, le_out_gga(s(Y), X, B)) → IF_IN_GGGA(B, X, s(Y), Z)
IF_IN_GGGA(true, X, s(Y), s(Z)) → U5_GGGA(X, Y, Z, minus_in_gga(X, Y, U))
IF_IN_GGGA(true, X, s(Y), s(Z)) → MINUS_IN_GGA(X, Y, U)
MINUS_IN_GGA(s(X), s(Y), Z) → U2_GGA(X, Y, Z, minus_in_gga(X, Y, Z))
MINUS_IN_GGA(s(X), s(Y), Z) → MINUS_IN_GGA(X, Y, Z)
U5_GGGA(X, Y, Z, minus_out_gga(X, Y, U)) → U6_GGGA(X, Y, Z, div_in_gga(U, s(Y), Z))
U5_GGGA(X, Y, Z, minus_out_gga(X, Y, U)) → DIV_IN_GGA(U, s(Y), Z)
div_in_gga(X, s(Y), Z) → U3_gga(X, Y, Z, le_in_gga(s(Y), X, B))
le_in_gga(0, Y, true) → le_out_gga(0, Y, true)
le_in_gga(s(X), 0, false) → le_out_gga(s(X), 0, false)
le_in_gga(s(X), s(Y), B) → U1_gga(X, Y, B, le_in_gga(X, Y, B))
U1_gga(X, Y, B, le_out_gga(X, Y, B)) → le_out_gga(s(X), s(Y), B)
U3_gga(X, Y, Z, le_out_gga(s(Y), X, B)) → U4_gga(X, Y, Z, if_in_ggga(B, X, s(Y), Z))
if_in_ggga(false, X, s(Y), 0) → if_out_ggga(false, X, s(Y), 0)
if_in_ggga(true, X, s(Y), s(Z)) → U5_ggga(X, Y, Z, minus_in_gga(X, Y, U))
minus_in_gga(X, 0, X) → minus_out_gga(X, 0, X)
minus_in_gga(s(X), s(Y), Z) → U2_gga(X, Y, Z, minus_in_gga(X, Y, Z))
U2_gga(X, Y, Z, minus_out_gga(X, Y, Z)) → minus_out_gga(s(X), s(Y), Z)
U5_ggga(X, Y, Z, minus_out_gga(X, Y, U)) → U6_ggga(X, Y, Z, div_in_gga(U, s(Y), Z))
U6_ggga(X, Y, Z, div_out_gga(U, s(Y), Z)) → if_out_ggga(true, X, s(Y), s(Z))
U4_gga(X, Y, Z, if_out_ggga(B, X, s(Y), Z)) → div_out_gga(X, s(Y), Z)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PrologToPiTRSProof
DIV_IN_GGA(X, s(Y), Z) → U3_GGA(X, Y, Z, le_in_gga(s(Y), X, B))
DIV_IN_GGA(X, s(Y), Z) → LE_IN_GGA(s(Y), X, B)
LE_IN_GGA(s(X), s(Y), B) → U1_GGA(X, Y, B, le_in_gga(X, Y, B))
LE_IN_GGA(s(X), s(Y), B) → LE_IN_GGA(X, Y, B)
U3_GGA(X, Y, Z, le_out_gga(s(Y), X, B)) → U4_GGA(X, Y, Z, if_in_ggga(B, X, s(Y), Z))
U3_GGA(X, Y, Z, le_out_gga(s(Y), X, B)) → IF_IN_GGGA(B, X, s(Y), Z)
IF_IN_GGGA(true, X, s(Y), s(Z)) → U5_GGGA(X, Y, Z, minus_in_gga(X, Y, U))
IF_IN_GGGA(true, X, s(Y), s(Z)) → MINUS_IN_GGA(X, Y, U)
MINUS_IN_GGA(s(X), s(Y), Z) → U2_GGA(X, Y, Z, minus_in_gga(X, Y, Z))
MINUS_IN_GGA(s(X), s(Y), Z) → MINUS_IN_GGA(X, Y, Z)
U5_GGGA(X, Y, Z, minus_out_gga(X, Y, U)) → U6_GGGA(X, Y, Z, div_in_gga(U, s(Y), Z))
U5_GGGA(X, Y, Z, minus_out_gga(X, Y, U)) → DIV_IN_GGA(U, s(Y), Z)
div_in_gga(X, s(Y), Z) → U3_gga(X, Y, Z, le_in_gga(s(Y), X, B))
le_in_gga(0, Y, true) → le_out_gga(0, Y, true)
le_in_gga(s(X), 0, false) → le_out_gga(s(X), 0, false)
le_in_gga(s(X), s(Y), B) → U1_gga(X, Y, B, le_in_gga(X, Y, B))
U1_gga(X, Y, B, le_out_gga(X, Y, B)) → le_out_gga(s(X), s(Y), B)
U3_gga(X, Y, Z, le_out_gga(s(Y), X, B)) → U4_gga(X, Y, Z, if_in_ggga(B, X, s(Y), Z))
if_in_ggga(false, X, s(Y), 0) → if_out_ggga(false, X, s(Y), 0)
if_in_ggga(true, X, s(Y), s(Z)) → U5_ggga(X, Y, Z, minus_in_gga(X, Y, U))
minus_in_gga(X, 0, X) → minus_out_gga(X, 0, X)
minus_in_gga(s(X), s(Y), Z) → U2_gga(X, Y, Z, minus_in_gga(X, Y, Z))
U2_gga(X, Y, Z, minus_out_gga(X, Y, Z)) → minus_out_gga(s(X), s(Y), Z)
U5_ggga(X, Y, Z, minus_out_gga(X, Y, U)) → U6_ggga(X, Y, Z, div_in_gga(U, s(Y), Z))
U6_ggga(X, Y, Z, div_out_gga(U, s(Y), Z)) → if_out_ggga(true, X, s(Y), s(Z))
U4_gga(X, Y, Z, if_out_ggga(B, X, s(Y), Z)) → div_out_gga(X, s(Y), Z)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDP
↳ PrologToPiTRSProof
MINUS_IN_GGA(s(X), s(Y), Z) → MINUS_IN_GGA(X, Y, Z)
div_in_gga(X, s(Y), Z) → U3_gga(X, Y, Z, le_in_gga(s(Y), X, B))
le_in_gga(0, Y, true) → le_out_gga(0, Y, true)
le_in_gga(s(X), 0, false) → le_out_gga(s(X), 0, false)
le_in_gga(s(X), s(Y), B) → U1_gga(X, Y, B, le_in_gga(X, Y, B))
U1_gga(X, Y, B, le_out_gga(X, Y, B)) → le_out_gga(s(X), s(Y), B)
U3_gga(X, Y, Z, le_out_gga(s(Y), X, B)) → U4_gga(X, Y, Z, if_in_ggga(B, X, s(Y), Z))
if_in_ggga(false, X, s(Y), 0) → if_out_ggga(false, X, s(Y), 0)
if_in_ggga(true, X, s(Y), s(Z)) → U5_ggga(X, Y, Z, minus_in_gga(X, Y, U))
minus_in_gga(X, 0, X) → minus_out_gga(X, 0, X)
minus_in_gga(s(X), s(Y), Z) → U2_gga(X, Y, Z, minus_in_gga(X, Y, Z))
U2_gga(X, Y, Z, minus_out_gga(X, Y, Z)) → minus_out_gga(s(X), s(Y), Z)
U5_ggga(X, Y, Z, minus_out_gga(X, Y, U)) → U6_ggga(X, Y, Z, div_in_gga(U, s(Y), Z))
U6_ggga(X, Y, Z, div_out_gga(U, s(Y), Z)) → if_out_ggga(true, X, s(Y), s(Z))
U4_gga(X, Y, Z, if_out_ggga(B, X, s(Y), Z)) → div_out_gga(X, s(Y), Z)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
↳ PiDP
↳ PrologToPiTRSProof
MINUS_IN_GGA(s(X), s(Y), Z) → MINUS_IN_GGA(X, Y, Z)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
↳ PiDP
↳ PrologToPiTRSProof
MINUS_IN_GGA(s(X), s(Y)) → MINUS_IN_GGA(X, Y)
From the DPs we obtained the following set of size-change graphs:
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PrologToPiTRSProof
LE_IN_GGA(s(X), s(Y), B) → LE_IN_GGA(X, Y, B)
div_in_gga(X, s(Y), Z) → U3_gga(X, Y, Z, le_in_gga(s(Y), X, B))
le_in_gga(0, Y, true) → le_out_gga(0, Y, true)
le_in_gga(s(X), 0, false) → le_out_gga(s(X), 0, false)
le_in_gga(s(X), s(Y), B) → U1_gga(X, Y, B, le_in_gga(X, Y, B))
U1_gga(X, Y, B, le_out_gga(X, Y, B)) → le_out_gga(s(X), s(Y), B)
U3_gga(X, Y, Z, le_out_gga(s(Y), X, B)) → U4_gga(X, Y, Z, if_in_ggga(B, X, s(Y), Z))
if_in_ggga(false, X, s(Y), 0) → if_out_ggga(false, X, s(Y), 0)
if_in_ggga(true, X, s(Y), s(Z)) → U5_ggga(X, Y, Z, minus_in_gga(X, Y, U))
minus_in_gga(X, 0, X) → minus_out_gga(X, 0, X)
minus_in_gga(s(X), s(Y), Z) → U2_gga(X, Y, Z, minus_in_gga(X, Y, Z))
U2_gga(X, Y, Z, minus_out_gga(X, Y, Z)) → minus_out_gga(s(X), s(Y), Z)
U5_ggga(X, Y, Z, minus_out_gga(X, Y, U)) → U6_ggga(X, Y, Z, div_in_gga(U, s(Y), Z))
U6_ggga(X, Y, Z, div_out_gga(U, s(Y), Z)) → if_out_ggga(true, X, s(Y), s(Z))
U4_gga(X, Y, Z, if_out_ggga(B, X, s(Y), Z)) → div_out_gga(X, s(Y), Z)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
↳ PrologToPiTRSProof
LE_IN_GGA(s(X), s(Y), B) → LE_IN_GGA(X, Y, B)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
↳ PrologToPiTRSProof
LE_IN_GGA(s(X), s(Y)) → LE_IN_GGA(X, Y)
From the DPs we obtained the following set of size-change graphs:
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PrologToPiTRSProof
U5_GGGA(X, Y, Z, minus_out_gga(X, Y, U)) → DIV_IN_GGA(U, s(Y), Z)
IF_IN_GGGA(true, X, s(Y), s(Z)) → U5_GGGA(X, Y, Z, minus_in_gga(X, Y, U))
DIV_IN_GGA(X, s(Y), Z) → U3_GGA(X, Y, Z, le_in_gga(s(Y), X, B))
U3_GGA(X, Y, Z, le_out_gga(s(Y), X, B)) → IF_IN_GGGA(B, X, s(Y), Z)
div_in_gga(X, s(Y), Z) → U3_gga(X, Y, Z, le_in_gga(s(Y), X, B))
le_in_gga(0, Y, true) → le_out_gga(0, Y, true)
le_in_gga(s(X), 0, false) → le_out_gga(s(X), 0, false)
le_in_gga(s(X), s(Y), B) → U1_gga(X, Y, B, le_in_gga(X, Y, B))
U1_gga(X, Y, B, le_out_gga(X, Y, B)) → le_out_gga(s(X), s(Y), B)
U3_gga(X, Y, Z, le_out_gga(s(Y), X, B)) → U4_gga(X, Y, Z, if_in_ggga(B, X, s(Y), Z))
if_in_ggga(false, X, s(Y), 0) → if_out_ggga(false, X, s(Y), 0)
if_in_ggga(true, X, s(Y), s(Z)) → U5_ggga(X, Y, Z, minus_in_gga(X, Y, U))
minus_in_gga(X, 0, X) → minus_out_gga(X, 0, X)
minus_in_gga(s(X), s(Y), Z) → U2_gga(X, Y, Z, minus_in_gga(X, Y, Z))
U2_gga(X, Y, Z, minus_out_gga(X, Y, Z)) → minus_out_gga(s(X), s(Y), Z)
U5_ggga(X, Y, Z, minus_out_gga(X, Y, U)) → U6_ggga(X, Y, Z, div_in_gga(U, s(Y), Z))
U6_ggga(X, Y, Z, div_out_gga(U, s(Y), Z)) → if_out_ggga(true, X, s(Y), s(Z))
U4_gga(X, Y, Z, if_out_ggga(B, X, s(Y), Z)) → div_out_gga(X, s(Y), Z)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PrologToPiTRSProof
U5_GGGA(X, Y, Z, minus_out_gga(X, Y, U)) → DIV_IN_GGA(U, s(Y), Z)
IF_IN_GGGA(true, X, s(Y), s(Z)) → U5_GGGA(X, Y, Z, minus_in_gga(X, Y, U))
DIV_IN_GGA(X, s(Y), Z) → U3_GGA(X, Y, Z, le_in_gga(s(Y), X, B))
U3_GGA(X, Y, Z, le_out_gga(s(Y), X, B)) → IF_IN_GGGA(B, X, s(Y), Z)
minus_in_gga(X, 0, X) → minus_out_gga(X, 0, X)
minus_in_gga(s(X), s(Y), Z) → U2_gga(X, Y, Z, minus_in_gga(X, Y, Z))
le_in_gga(s(X), 0, false) → le_out_gga(s(X), 0, false)
le_in_gga(s(X), s(Y), B) → U1_gga(X, Y, B, le_in_gga(X, Y, B))
U2_gga(X, Y, Z, minus_out_gga(X, Y, Z)) → minus_out_gga(s(X), s(Y), Z)
U1_gga(X, Y, B, le_out_gga(X, Y, B)) → le_out_gga(s(X), s(Y), B)
le_in_gga(0, Y, true) → le_out_gga(0, Y, true)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Narrowing
↳ PrologToPiTRSProof
DIV_IN_GGA(X, s(Y)) → U3_GGA(X, Y, le_in_gga(s(Y), X))
U5_GGGA(Y, minus_out_gga(U)) → DIV_IN_GGA(U, s(Y))
IF_IN_GGGA(true, X, s(Y)) → U5_GGGA(Y, minus_in_gga(X, Y))
U3_GGA(X, Y, le_out_gga(B)) → IF_IN_GGGA(B, X, s(Y))
minus_in_gga(X, 0) → minus_out_gga(X)
minus_in_gga(s(X), s(Y)) → U2_gga(minus_in_gga(X, Y))
le_in_gga(s(X), 0) → le_out_gga(false)
le_in_gga(s(X), s(Y)) → U1_gga(le_in_gga(X, Y))
U2_gga(minus_out_gga(Z)) → minus_out_gga(Z)
U1_gga(le_out_gga(B)) → le_out_gga(B)
le_in_gga(0, Y) → le_out_gga(true)
minus_in_gga(x0, x1)
le_in_gga(x0, x1)
U2_gga(x0)
U1_gga(x0)
IF_IN_GGGA(true, x0, s(0)) → U5_GGGA(0, minus_out_gga(x0))
IF_IN_GGGA(true, s(x0), s(s(x1))) → U5_GGGA(s(x1), U2_gga(minus_in_gga(x0, x1)))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ PrologToPiTRSProof
IF_IN_GGGA(true, x0, s(0)) → U5_GGGA(0, minus_out_gga(x0))
DIV_IN_GGA(X, s(Y)) → U3_GGA(X, Y, le_in_gga(s(Y), X))
IF_IN_GGGA(true, s(x0), s(s(x1))) → U5_GGGA(s(x1), U2_gga(minus_in_gga(x0, x1)))
U5_GGGA(Y, minus_out_gga(U)) → DIV_IN_GGA(U, s(Y))
U3_GGA(X, Y, le_out_gga(B)) → IF_IN_GGGA(B, X, s(Y))
minus_in_gga(X, 0) → minus_out_gga(X)
minus_in_gga(s(X), s(Y)) → U2_gga(minus_in_gga(X, Y))
le_in_gga(s(X), 0) → le_out_gga(false)
le_in_gga(s(X), s(Y)) → U1_gga(le_in_gga(X, Y))
U2_gga(minus_out_gga(Z)) → minus_out_gga(Z)
U1_gga(le_out_gga(B)) → le_out_gga(B)
le_in_gga(0, Y) → le_out_gga(true)
minus_in_gga(x0, x1)
le_in_gga(x0, x1)
U2_gga(x0)
U1_gga(x0)
DIV_IN_GGA(0, s(x0)) → U3_GGA(0, x0, le_out_gga(false))
DIV_IN_GGA(s(x1), s(x0)) → U3_GGA(s(x1), x0, U1_gga(le_in_gga(x0, x1)))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Instantiation
↳ PrologToPiTRSProof
IF_IN_GGGA(true, x0, s(0)) → U5_GGGA(0, minus_out_gga(x0))
DIV_IN_GGA(s(x1), s(x0)) → U3_GGA(s(x1), x0, U1_gga(le_in_gga(x0, x1)))
IF_IN_GGGA(true, s(x0), s(s(x1))) → U5_GGGA(s(x1), U2_gga(minus_in_gga(x0, x1)))
U5_GGGA(Y, minus_out_gga(U)) → DIV_IN_GGA(U, s(Y))
DIV_IN_GGA(0, s(x0)) → U3_GGA(0, x0, le_out_gga(false))
U3_GGA(X, Y, le_out_gga(B)) → IF_IN_GGGA(B, X, s(Y))
minus_in_gga(X, 0) → minus_out_gga(X)
minus_in_gga(s(X), s(Y)) → U2_gga(minus_in_gga(X, Y))
le_in_gga(s(X), 0) → le_out_gga(false)
le_in_gga(s(X), s(Y)) → U1_gga(le_in_gga(X, Y))
U2_gga(minus_out_gga(Z)) → minus_out_gga(Z)
U1_gga(le_out_gga(B)) → le_out_gga(B)
le_in_gga(0, Y) → le_out_gga(true)
minus_in_gga(x0, x1)
le_in_gga(x0, x1)
U2_gga(x0)
U1_gga(x0)
U5_GGGA(0, minus_out_gga(z0)) → DIV_IN_GGA(z0, s(0))
U5_GGGA(s(z1), minus_out_gga(x1)) → DIV_IN_GGA(x1, s(s(z1)))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ PrologToPiTRSProof
IF_IN_GGGA(true, x0, s(0)) → U5_GGGA(0, minus_out_gga(x0))
U5_GGGA(0, minus_out_gga(z0)) → DIV_IN_GGA(z0, s(0))
U5_GGGA(s(z1), minus_out_gga(x1)) → DIV_IN_GGA(x1, s(s(z1)))
IF_IN_GGGA(true, s(x0), s(s(x1))) → U5_GGGA(s(x1), U2_gga(minus_in_gga(x0, x1)))
DIV_IN_GGA(s(x1), s(x0)) → U3_GGA(s(x1), x0, U1_gga(le_in_gga(x0, x1)))
DIV_IN_GGA(0, s(x0)) → U3_GGA(0, x0, le_out_gga(false))
U3_GGA(X, Y, le_out_gga(B)) → IF_IN_GGGA(B, X, s(Y))
minus_in_gga(X, 0) → minus_out_gga(X)
minus_in_gga(s(X), s(Y)) → U2_gga(minus_in_gga(X, Y))
le_in_gga(s(X), 0) → le_out_gga(false)
le_in_gga(s(X), s(Y)) → U1_gga(le_in_gga(X, Y))
U2_gga(minus_out_gga(Z)) → minus_out_gga(Z)
U1_gga(le_out_gga(B)) → le_out_gga(B)
le_in_gga(0, Y) → le_out_gga(true)
minus_in_gga(x0, x1)
le_in_gga(x0, x1)
U2_gga(x0)
U1_gga(x0)
U3_GGA(0, z0, le_out_gga(false)) → IF_IN_GGGA(false, 0, s(z0))
U3_GGA(s(z0), z1, le_out_gga(x2)) → IF_IN_GGGA(x2, s(z0), s(z1))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ DependencyGraphProof
↳ PrologToPiTRSProof
IF_IN_GGGA(true, x0, s(0)) → U5_GGGA(0, minus_out_gga(x0))
U5_GGGA(0, minus_out_gga(z0)) → DIV_IN_GGA(z0, s(0))
U3_GGA(0, z0, le_out_gga(false)) → IF_IN_GGGA(false, 0, s(z0))
U5_GGGA(s(z1), minus_out_gga(x1)) → DIV_IN_GGA(x1, s(s(z1)))
DIV_IN_GGA(s(x1), s(x0)) → U3_GGA(s(x1), x0, U1_gga(le_in_gga(x0, x1)))
IF_IN_GGGA(true, s(x0), s(s(x1))) → U5_GGGA(s(x1), U2_gga(minus_in_gga(x0, x1)))
DIV_IN_GGA(0, s(x0)) → U3_GGA(0, x0, le_out_gga(false))
U3_GGA(s(z0), z1, le_out_gga(x2)) → IF_IN_GGGA(x2, s(z0), s(z1))
minus_in_gga(X, 0) → minus_out_gga(X)
minus_in_gga(s(X), s(Y)) → U2_gga(minus_in_gga(X, Y))
le_in_gga(s(X), 0) → le_out_gga(false)
le_in_gga(s(X), s(Y)) → U1_gga(le_in_gga(X, Y))
U2_gga(minus_out_gga(Z)) → minus_out_gga(Z)
U1_gga(le_out_gga(B)) → le_out_gga(B)
le_in_gga(0, Y) → le_out_gga(true)
minus_in_gga(x0, x1)
le_in_gga(x0, x1)
U2_gga(x0)
U1_gga(x0)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Instantiation
↳ PrologToPiTRSProof
IF_IN_GGGA(true, x0, s(0)) → U5_GGGA(0, minus_out_gga(x0))
U5_GGGA(0, minus_out_gga(z0)) → DIV_IN_GGA(z0, s(0))
U5_GGGA(s(z1), minus_out_gga(x1)) → DIV_IN_GGA(x1, s(s(z1)))
IF_IN_GGGA(true, s(x0), s(s(x1))) → U5_GGGA(s(x1), U2_gga(minus_in_gga(x0, x1)))
DIV_IN_GGA(s(x1), s(x0)) → U3_GGA(s(x1), x0, U1_gga(le_in_gga(x0, x1)))
U3_GGA(s(z0), z1, le_out_gga(x2)) → IF_IN_GGGA(x2, s(z0), s(z1))
minus_in_gga(X, 0) → minus_out_gga(X)
minus_in_gga(s(X), s(Y)) → U2_gga(minus_in_gga(X, Y))
le_in_gga(s(X), 0) → le_out_gga(false)
le_in_gga(s(X), s(Y)) → U1_gga(le_in_gga(X, Y))
U2_gga(minus_out_gga(Z)) → minus_out_gga(Z)
U1_gga(le_out_gga(B)) → le_out_gga(B)
le_in_gga(0, Y) → le_out_gga(true)
minus_in_gga(x0, x1)
le_in_gga(x0, x1)
U2_gga(x0)
U1_gga(x0)
DIV_IN_GGA(s(x0), s(s(z0))) → U3_GGA(s(x0), s(z0), U1_gga(le_in_gga(s(z0), x0)))
DIV_IN_GGA(s(x0), s(0)) → U3_GGA(s(x0), 0, U1_gga(le_in_gga(0, x0)))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Instantiation
↳ QDP
↳ Rewriting
↳ PrologToPiTRSProof
DIV_IN_GGA(s(x0), s(s(z0))) → U3_GGA(s(x0), s(z0), U1_gga(le_in_gga(s(z0), x0)))
IF_IN_GGGA(true, x0, s(0)) → U5_GGGA(0, minus_out_gga(x0))
U5_GGGA(0, minus_out_gga(z0)) → DIV_IN_GGA(z0, s(0))
U5_GGGA(s(z1), minus_out_gga(x1)) → DIV_IN_GGA(x1, s(s(z1)))
IF_IN_GGGA(true, s(x0), s(s(x1))) → U5_GGGA(s(x1), U2_gga(minus_in_gga(x0, x1)))
DIV_IN_GGA(s(x0), s(0)) → U3_GGA(s(x0), 0, U1_gga(le_in_gga(0, x0)))
U3_GGA(s(z0), z1, le_out_gga(x2)) → IF_IN_GGGA(x2, s(z0), s(z1))
minus_in_gga(X, 0) → minus_out_gga(X)
minus_in_gga(s(X), s(Y)) → U2_gga(minus_in_gga(X, Y))
le_in_gga(s(X), 0) → le_out_gga(false)
le_in_gga(s(X), s(Y)) → U1_gga(le_in_gga(X, Y))
U2_gga(minus_out_gga(Z)) → minus_out_gga(Z)
U1_gga(le_out_gga(B)) → le_out_gga(B)
le_in_gga(0, Y) → le_out_gga(true)
minus_in_gga(x0, x1)
le_in_gga(x0, x1)
U2_gga(x0)
U1_gga(x0)
DIV_IN_GGA(s(x0), s(0)) → U3_GGA(s(x0), 0, U1_gga(le_out_gga(true)))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Instantiation
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ PrologToPiTRSProof
IF_IN_GGGA(true, x0, s(0)) → U5_GGGA(0, minus_out_gga(x0))
DIV_IN_GGA(s(x0), s(s(z0))) → U3_GGA(s(x0), s(z0), U1_gga(le_in_gga(s(z0), x0)))
U5_GGGA(0, minus_out_gga(z0)) → DIV_IN_GGA(z0, s(0))
DIV_IN_GGA(s(x0), s(0)) → U3_GGA(s(x0), 0, U1_gga(le_out_gga(true)))
U5_GGGA(s(z1), minus_out_gga(x1)) → DIV_IN_GGA(x1, s(s(z1)))
IF_IN_GGGA(true, s(x0), s(s(x1))) → U5_GGGA(s(x1), U2_gga(minus_in_gga(x0, x1)))
U3_GGA(s(z0), z1, le_out_gga(x2)) → IF_IN_GGGA(x2, s(z0), s(z1))
minus_in_gga(X, 0) → minus_out_gga(X)
minus_in_gga(s(X), s(Y)) → U2_gga(minus_in_gga(X, Y))
le_in_gga(s(X), 0) → le_out_gga(false)
le_in_gga(s(X), s(Y)) → U1_gga(le_in_gga(X, Y))
U2_gga(minus_out_gga(Z)) → minus_out_gga(Z)
U1_gga(le_out_gga(B)) → le_out_gga(B)
le_in_gga(0, Y) → le_out_gga(true)
minus_in_gga(x0, x1)
le_in_gga(x0, x1)
U2_gga(x0)
U1_gga(x0)
DIV_IN_GGA(s(x0), s(0)) → U3_GGA(s(x0), 0, le_out_gga(true))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Instantiation
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Instantiation
↳ PrologToPiTRSProof
DIV_IN_GGA(s(x0), s(s(z0))) → U3_GGA(s(x0), s(z0), U1_gga(le_in_gga(s(z0), x0)))
IF_IN_GGGA(true, x0, s(0)) → U5_GGGA(0, minus_out_gga(x0))
DIV_IN_GGA(s(x0), s(0)) → U3_GGA(s(x0), 0, le_out_gga(true))
U5_GGGA(0, minus_out_gga(z0)) → DIV_IN_GGA(z0, s(0))
U5_GGGA(s(z1), minus_out_gga(x1)) → DIV_IN_GGA(x1, s(s(z1)))
IF_IN_GGGA(true, s(x0), s(s(x1))) → U5_GGGA(s(x1), U2_gga(minus_in_gga(x0, x1)))
U3_GGA(s(z0), z1, le_out_gga(x2)) → IF_IN_GGGA(x2, s(z0), s(z1))
minus_in_gga(X, 0) → minus_out_gga(X)
minus_in_gga(s(X), s(Y)) → U2_gga(minus_in_gga(X, Y))
le_in_gga(s(X), 0) → le_out_gga(false)
le_in_gga(s(X), s(Y)) → U1_gga(le_in_gga(X, Y))
U2_gga(minus_out_gga(Z)) → minus_out_gga(Z)
U1_gga(le_out_gga(B)) → le_out_gga(B)
le_in_gga(0, Y) → le_out_gga(true)
minus_in_gga(x0, x1)
le_in_gga(x0, x1)
U2_gga(x0)
U1_gga(x0)
U3_GGA(s(z0), 0, le_out_gga(true)) → IF_IN_GGGA(true, s(z0), s(0))
U3_GGA(s(z0), s(z1), le_out_gga(x2)) → IF_IN_GGGA(x2, s(z0), s(s(z1)))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Instantiation
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Instantiation
↳ QDP
↳ DependencyGraphProof
↳ PrologToPiTRSProof
IF_IN_GGGA(true, x0, s(0)) → U5_GGGA(0, minus_out_gga(x0))
DIV_IN_GGA(s(x0), s(s(z0))) → U3_GGA(s(x0), s(z0), U1_gga(le_in_gga(s(z0), x0)))
U3_GGA(s(z0), 0, le_out_gga(true)) → IF_IN_GGGA(true, s(z0), s(0))
U5_GGGA(0, minus_out_gga(z0)) → DIV_IN_GGA(z0, s(0))
DIV_IN_GGA(s(x0), s(0)) → U3_GGA(s(x0), 0, le_out_gga(true))
U5_GGGA(s(z1), minus_out_gga(x1)) → DIV_IN_GGA(x1, s(s(z1)))
IF_IN_GGGA(true, s(x0), s(s(x1))) → U5_GGGA(s(x1), U2_gga(minus_in_gga(x0, x1)))
U3_GGA(s(z0), s(z1), le_out_gga(x2)) → IF_IN_GGGA(x2, s(z0), s(s(z1)))
minus_in_gga(X, 0) → minus_out_gga(X)
minus_in_gga(s(X), s(Y)) → U2_gga(minus_in_gga(X, Y))
le_in_gga(s(X), 0) → le_out_gga(false)
le_in_gga(s(X), s(Y)) → U1_gga(le_in_gga(X, Y))
U2_gga(minus_out_gga(Z)) → minus_out_gga(Z)
U1_gga(le_out_gga(B)) → le_out_gga(B)
le_in_gga(0, Y) → le_out_gga(true)
minus_in_gga(x0, x1)
le_in_gga(x0, x1)
U2_gga(x0)
U1_gga(x0)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Instantiation
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Instantiation
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ ForwardInstantiation
↳ QDP
↳ PrologToPiTRSProof
DIV_IN_GGA(s(x0), s(s(z0))) → U3_GGA(s(x0), s(z0), U1_gga(le_in_gga(s(z0), x0)))
U5_GGGA(s(z1), minus_out_gga(x1)) → DIV_IN_GGA(x1, s(s(z1)))
IF_IN_GGGA(true, s(x0), s(s(x1))) → U5_GGGA(s(x1), U2_gga(minus_in_gga(x0, x1)))
U3_GGA(s(z0), s(z1), le_out_gga(x2)) → IF_IN_GGGA(x2, s(z0), s(s(z1)))
minus_in_gga(X, 0) → minus_out_gga(X)
minus_in_gga(s(X), s(Y)) → U2_gga(minus_in_gga(X, Y))
le_in_gga(s(X), 0) → le_out_gga(false)
le_in_gga(s(X), s(Y)) → U1_gga(le_in_gga(X, Y))
U2_gga(minus_out_gga(Z)) → minus_out_gga(Z)
U1_gga(le_out_gga(B)) → le_out_gga(B)
le_in_gga(0, Y) → le_out_gga(true)
minus_in_gga(x0, x1)
le_in_gga(x0, x1)
U2_gga(x0)
U1_gga(x0)
U5_GGGA(s(x0), minus_out_gga(s(y_0))) → DIV_IN_GGA(s(y_0), s(s(x0)))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Instantiation
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Instantiation
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ ForwardInstantiation
↳ QDP
↳ ForwardInstantiation
↳ QDP
↳ PrologToPiTRSProof
DIV_IN_GGA(s(x0), s(s(z0))) → U3_GGA(s(x0), s(z0), U1_gga(le_in_gga(s(z0), x0)))
IF_IN_GGGA(true, s(x0), s(s(x1))) → U5_GGGA(s(x1), U2_gga(minus_in_gga(x0, x1)))
U3_GGA(s(z0), s(z1), le_out_gga(x2)) → IF_IN_GGGA(x2, s(z0), s(s(z1)))
U5_GGGA(s(x0), minus_out_gga(s(y_0))) → DIV_IN_GGA(s(y_0), s(s(x0)))
minus_in_gga(X, 0) → minus_out_gga(X)
minus_in_gga(s(X), s(Y)) → U2_gga(minus_in_gga(X, Y))
le_in_gga(s(X), 0) → le_out_gga(false)
le_in_gga(s(X), s(Y)) → U1_gga(le_in_gga(X, Y))
U2_gga(minus_out_gga(Z)) → minus_out_gga(Z)
U1_gga(le_out_gga(B)) → le_out_gga(B)
le_in_gga(0, Y) → le_out_gga(true)
minus_in_gga(x0, x1)
le_in_gga(x0, x1)
U2_gga(x0)
U1_gga(x0)
U3_GGA(s(x0), s(x1), le_out_gga(true)) → IF_IN_GGGA(true, s(x0), s(s(x1)))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Instantiation
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Instantiation
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ ForwardInstantiation
↳ QDP
↳ ForwardInstantiation
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PrologToPiTRSProof
DIV_IN_GGA(s(x0), s(s(z0))) → U3_GGA(s(x0), s(z0), U1_gga(le_in_gga(s(z0), x0)))
IF_IN_GGGA(true, s(x0), s(s(x1))) → U5_GGGA(s(x1), U2_gga(minus_in_gga(x0, x1)))
U3_GGA(s(x0), s(x1), le_out_gga(true)) → IF_IN_GGGA(true, s(x0), s(s(x1)))
U5_GGGA(s(x0), minus_out_gga(s(y_0))) → DIV_IN_GGA(s(y_0), s(s(x0)))
minus_in_gga(X, 0) → minus_out_gga(X)
minus_in_gga(s(X), s(Y)) → U2_gga(minus_in_gga(X, Y))
le_in_gga(s(X), 0) → le_out_gga(false)
le_in_gga(s(X), s(Y)) → U1_gga(le_in_gga(X, Y))
U2_gga(minus_out_gga(Z)) → minus_out_gga(Z)
U1_gga(le_out_gga(B)) → le_out_gga(B)
le_in_gga(0, Y) → le_out_gga(true)
minus_in_gga(x0, x1)
le_in_gga(x0, x1)
U2_gga(x0)
U1_gga(x0)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
IF_IN_GGGA(true, s(x0), s(s(x1))) → U5_GGGA(s(x1), U2_gga(minus_in_gga(x0, x1)))
Used ordering: Polynomial interpretation [25]:
DIV_IN_GGA(s(x0), s(s(z0))) → U3_GGA(s(x0), s(z0), U1_gga(le_in_gga(s(z0), x0)))
U3_GGA(s(x0), s(x1), le_out_gga(true)) → IF_IN_GGGA(true, s(x0), s(s(x1)))
U5_GGGA(s(x0), minus_out_gga(s(y_0))) → DIV_IN_GGA(s(y_0), s(s(x0)))
POL(0) = 0
POL(DIV_IN_GGA(x1, x2)) = 1 + x1
POL(IF_IN_GGGA(x1, x2, x3)) = 1 + x2
POL(U1_gga(x1)) = 0
POL(U2_gga(x1)) = x1
POL(U3_GGA(x1, x2, x3)) = 1 + x1
POL(U5_GGGA(x1, x2)) = 1 + x2
POL(false) = 0
POL(le_in_gga(x1, x2)) = 0
POL(le_out_gga(x1)) = 0
POL(minus_in_gga(x1, x2)) = x1
POL(minus_out_gga(x1)) = x1
POL(s(x1)) = 1 + x1
POL(true) = 0
minus_in_gga(X, 0) → minus_out_gga(X)
U2_gga(minus_out_gga(Z)) → minus_out_gga(Z)
minus_in_gga(s(X), s(Y)) → U2_gga(minus_in_gga(X, Y))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Instantiation
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Instantiation
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ ForwardInstantiation
↳ QDP
↳ ForwardInstantiation
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ PrologToPiTRSProof
DIV_IN_GGA(s(x0), s(s(z0))) → U3_GGA(s(x0), s(z0), U1_gga(le_in_gga(s(z0), x0)))
U3_GGA(s(x0), s(x1), le_out_gga(true)) → IF_IN_GGGA(true, s(x0), s(s(x1)))
U5_GGGA(s(x0), minus_out_gga(s(y_0))) → DIV_IN_GGA(s(y_0), s(s(x0)))
minus_in_gga(X, 0) → minus_out_gga(X)
minus_in_gga(s(X), s(Y)) → U2_gga(minus_in_gga(X, Y))
le_in_gga(s(X), 0) → le_out_gga(false)
le_in_gga(s(X), s(Y)) → U1_gga(le_in_gga(X, Y))
U2_gga(minus_out_gga(Z)) → minus_out_gga(Z)
U1_gga(le_out_gga(B)) → le_out_gga(B)
le_in_gga(0, Y) → le_out_gga(true)
minus_in_gga(x0, x1)
le_in_gga(x0, x1)
U2_gga(x0)
U1_gga(x0)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Instantiation
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Instantiation
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ PrologToPiTRSProof
IF_IN_GGGA(true, x0, s(0)) → U5_GGGA(0, minus_out_gga(x0))
U5_GGGA(0, minus_out_gga(z0)) → DIV_IN_GGA(z0, s(0))
U3_GGA(s(z0), 0, le_out_gga(true)) → IF_IN_GGGA(true, s(z0), s(0))
DIV_IN_GGA(s(x0), s(0)) → U3_GGA(s(x0), 0, le_out_gga(true))
minus_in_gga(X, 0) → minus_out_gga(X)
minus_in_gga(s(X), s(Y)) → U2_gga(minus_in_gga(X, Y))
le_in_gga(s(X), 0) → le_out_gga(false)
le_in_gga(s(X), s(Y)) → U1_gga(le_in_gga(X, Y))
U2_gga(minus_out_gga(Z)) → minus_out_gga(Z)
U1_gga(le_out_gga(B)) → le_out_gga(B)
le_in_gga(0, Y) → le_out_gga(true)
minus_in_gga(x0, x1)
le_in_gga(x0, x1)
U2_gga(x0)
U1_gga(x0)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Instantiation
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Instantiation
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ PrologToPiTRSProof
IF_IN_GGGA(true, x0, s(0)) → U5_GGGA(0, minus_out_gga(x0))
U5_GGGA(0, minus_out_gga(z0)) → DIV_IN_GGA(z0, s(0))
U3_GGA(s(z0), 0, le_out_gga(true)) → IF_IN_GGGA(true, s(z0), s(0))
DIV_IN_GGA(s(x0), s(0)) → U3_GGA(s(x0), 0, le_out_gga(true))
minus_in_gga(x0, x1)
le_in_gga(x0, x1)
U2_gga(x0)
U1_gga(x0)
minus_in_gga(x0, x1)
le_in_gga(x0, x1)
U2_gga(x0)
U1_gga(x0)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Instantiation
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Instantiation
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Instantiation
↳ PrologToPiTRSProof
IF_IN_GGGA(true, x0, s(0)) → U5_GGGA(0, minus_out_gga(x0))
DIV_IN_GGA(s(x0), s(0)) → U3_GGA(s(x0), 0, le_out_gga(true))
U3_GGA(s(z0), 0, le_out_gga(true)) → IF_IN_GGGA(true, s(z0), s(0))
U5_GGGA(0, minus_out_gga(z0)) → DIV_IN_GGA(z0, s(0))
IF_IN_GGGA(true, s(z0), s(0)) → U5_GGGA(0, minus_out_gga(s(z0)))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Instantiation
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Instantiation
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ PrologToPiTRSProof
U5_GGGA(0, minus_out_gga(z0)) → DIV_IN_GGA(z0, s(0))
U3_GGA(s(z0), 0, le_out_gga(true)) → IF_IN_GGGA(true, s(z0), s(0))
DIV_IN_GGA(s(x0), s(0)) → U3_GGA(s(x0), 0, le_out_gga(true))
IF_IN_GGGA(true, s(z0), s(0)) → U5_GGGA(0, minus_out_gga(s(z0)))
U5_GGGA(0, minus_out_gga(s(z0))) → DIV_IN_GGA(s(z0), s(0))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Instantiation
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Instantiation
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ NonTerminationProof
↳ PrologToPiTRSProof
DIV_IN_GGA(s(x0), s(0)) → U3_GGA(s(x0), 0, le_out_gga(true))
U3_GGA(s(z0), 0, le_out_gga(true)) → IF_IN_GGGA(true, s(z0), s(0))
IF_IN_GGGA(true, s(z0), s(0)) → U5_GGGA(0, minus_out_gga(s(z0)))
U5_GGGA(0, minus_out_gga(s(z0))) → DIV_IN_GGA(s(z0), s(0))
DIV_IN_GGA(s(x0), s(0)) → U3_GGA(s(x0), 0, le_out_gga(true))
U3_GGA(s(z0), 0, le_out_gga(true)) → IF_IN_GGGA(true, s(z0), s(0))
IF_IN_GGGA(true, s(z0), s(0)) → U5_GGGA(0, minus_out_gga(s(z0)))
U5_GGGA(0, minus_out_gga(s(z0))) → DIV_IN_GGA(s(z0), s(0))
div_in_gga(X, s(Y), Z) → U3_gga(X, Y, Z, le_in_gga(s(Y), X, B))
le_in_gga(0, Y, true) → le_out_gga(0, Y, true)
le_in_gga(s(X), 0, false) → le_out_gga(s(X), 0, false)
le_in_gga(s(X), s(Y), B) → U1_gga(X, Y, B, le_in_gga(X, Y, B))
U1_gga(X, Y, B, le_out_gga(X, Y, B)) → le_out_gga(s(X), s(Y), B)
U3_gga(X, Y, Z, le_out_gga(s(Y), X, B)) → U4_gga(X, Y, Z, if_in_ggga(B, X, s(Y), Z))
if_in_ggga(false, X, s(Y), 0) → if_out_ggga(false, X, s(Y), 0)
if_in_ggga(true, X, s(Y), s(Z)) → U5_ggga(X, Y, Z, minus_in_gga(X, Y, U))
minus_in_gga(X, 0, X) → minus_out_gga(X, 0, X)
minus_in_gga(s(X), s(Y), Z) → U2_gga(X, Y, Z, minus_in_gga(X, Y, Z))
U2_gga(X, Y, Z, minus_out_gga(X, Y, Z)) → minus_out_gga(s(X), s(Y), Z)
U5_ggga(X, Y, Z, minus_out_gga(X, Y, U)) → U6_ggga(X, Y, Z, div_in_gga(U, s(Y), Z))
U6_ggga(X, Y, Z, div_out_gga(U, s(Y), Z)) → if_out_ggga(true, X, s(Y), s(Z))
U4_gga(X, Y, Z, if_out_ggga(B, X, s(Y), Z)) → div_out_gga(X, s(Y), Z)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
div_in_gga(X, s(Y), Z) → U3_gga(X, Y, Z, le_in_gga(s(Y), X, B))
le_in_gga(0, Y, true) → le_out_gga(0, Y, true)
le_in_gga(s(X), 0, false) → le_out_gga(s(X), 0, false)
le_in_gga(s(X), s(Y), B) → U1_gga(X, Y, B, le_in_gga(X, Y, B))
U1_gga(X, Y, B, le_out_gga(X, Y, B)) → le_out_gga(s(X), s(Y), B)
U3_gga(X, Y, Z, le_out_gga(s(Y), X, B)) → U4_gga(X, Y, Z, if_in_ggga(B, X, s(Y), Z))
if_in_ggga(false, X, s(Y), 0) → if_out_ggga(false, X, s(Y), 0)
if_in_ggga(true, X, s(Y), s(Z)) → U5_ggga(X, Y, Z, minus_in_gga(X, Y, U))
minus_in_gga(X, 0, X) → minus_out_gga(X, 0, X)
minus_in_gga(s(X), s(Y), Z) → U2_gga(X, Y, Z, minus_in_gga(X, Y, Z))
U2_gga(X, Y, Z, minus_out_gga(X, Y, Z)) → minus_out_gga(s(X), s(Y), Z)
U5_ggga(X, Y, Z, minus_out_gga(X, Y, U)) → U6_ggga(X, Y, Z, div_in_gga(U, s(Y), Z))
U6_ggga(X, Y, Z, div_out_gga(U, s(Y), Z)) → if_out_ggga(true, X, s(Y), s(Z))
U4_gga(X, Y, Z, if_out_ggga(B, X, s(Y), Z)) → div_out_gga(X, s(Y), Z)
DIV_IN_GGA(X, s(Y), Z) → U3_GGA(X, Y, Z, le_in_gga(s(Y), X, B))
DIV_IN_GGA(X, s(Y), Z) → LE_IN_GGA(s(Y), X, B)
LE_IN_GGA(s(X), s(Y), B) → U1_GGA(X, Y, B, le_in_gga(X, Y, B))
LE_IN_GGA(s(X), s(Y), B) → LE_IN_GGA(X, Y, B)
U3_GGA(X, Y, Z, le_out_gga(s(Y), X, B)) → U4_GGA(X, Y, Z, if_in_ggga(B, X, s(Y), Z))
U3_GGA(X, Y, Z, le_out_gga(s(Y), X, B)) → IF_IN_GGGA(B, X, s(Y), Z)
IF_IN_GGGA(true, X, s(Y), s(Z)) → U5_GGGA(X, Y, Z, minus_in_gga(X, Y, U))
IF_IN_GGGA(true, X, s(Y), s(Z)) → MINUS_IN_GGA(X, Y, U)
MINUS_IN_GGA(s(X), s(Y), Z) → U2_GGA(X, Y, Z, minus_in_gga(X, Y, Z))
MINUS_IN_GGA(s(X), s(Y), Z) → MINUS_IN_GGA(X, Y, Z)
U5_GGGA(X, Y, Z, minus_out_gga(X, Y, U)) → U6_GGGA(X, Y, Z, div_in_gga(U, s(Y), Z))
U5_GGGA(X, Y, Z, minus_out_gga(X, Y, U)) → DIV_IN_GGA(U, s(Y), Z)
div_in_gga(X, s(Y), Z) → U3_gga(X, Y, Z, le_in_gga(s(Y), X, B))
le_in_gga(0, Y, true) → le_out_gga(0, Y, true)
le_in_gga(s(X), 0, false) → le_out_gga(s(X), 0, false)
le_in_gga(s(X), s(Y), B) → U1_gga(X, Y, B, le_in_gga(X, Y, B))
U1_gga(X, Y, B, le_out_gga(X, Y, B)) → le_out_gga(s(X), s(Y), B)
U3_gga(X, Y, Z, le_out_gga(s(Y), X, B)) → U4_gga(X, Y, Z, if_in_ggga(B, X, s(Y), Z))
if_in_ggga(false, X, s(Y), 0) → if_out_ggga(false, X, s(Y), 0)
if_in_ggga(true, X, s(Y), s(Z)) → U5_ggga(X, Y, Z, minus_in_gga(X, Y, U))
minus_in_gga(X, 0, X) → minus_out_gga(X, 0, X)
minus_in_gga(s(X), s(Y), Z) → U2_gga(X, Y, Z, minus_in_gga(X, Y, Z))
U2_gga(X, Y, Z, minus_out_gga(X, Y, Z)) → minus_out_gga(s(X), s(Y), Z)
U5_ggga(X, Y, Z, minus_out_gga(X, Y, U)) → U6_ggga(X, Y, Z, div_in_gga(U, s(Y), Z))
U6_ggga(X, Y, Z, div_out_gga(U, s(Y), Z)) → if_out_ggga(true, X, s(Y), s(Z))
U4_gga(X, Y, Z, if_out_ggga(B, X, s(Y), Z)) → div_out_gga(X, s(Y), Z)
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
DIV_IN_GGA(X, s(Y), Z) → U3_GGA(X, Y, Z, le_in_gga(s(Y), X, B))
DIV_IN_GGA(X, s(Y), Z) → LE_IN_GGA(s(Y), X, B)
LE_IN_GGA(s(X), s(Y), B) → U1_GGA(X, Y, B, le_in_gga(X, Y, B))
LE_IN_GGA(s(X), s(Y), B) → LE_IN_GGA(X, Y, B)
U3_GGA(X, Y, Z, le_out_gga(s(Y), X, B)) → U4_GGA(X, Y, Z, if_in_ggga(B, X, s(Y), Z))
U3_GGA(X, Y, Z, le_out_gga(s(Y), X, B)) → IF_IN_GGGA(B, X, s(Y), Z)
IF_IN_GGGA(true, X, s(Y), s(Z)) → U5_GGGA(X, Y, Z, minus_in_gga(X, Y, U))
IF_IN_GGGA(true, X, s(Y), s(Z)) → MINUS_IN_GGA(X, Y, U)
MINUS_IN_GGA(s(X), s(Y), Z) → U2_GGA(X, Y, Z, minus_in_gga(X, Y, Z))
MINUS_IN_GGA(s(X), s(Y), Z) → MINUS_IN_GGA(X, Y, Z)
U5_GGGA(X, Y, Z, minus_out_gga(X, Y, U)) → U6_GGGA(X, Y, Z, div_in_gga(U, s(Y), Z))
U5_GGGA(X, Y, Z, minus_out_gga(X, Y, U)) → DIV_IN_GGA(U, s(Y), Z)
div_in_gga(X, s(Y), Z) → U3_gga(X, Y, Z, le_in_gga(s(Y), X, B))
le_in_gga(0, Y, true) → le_out_gga(0, Y, true)
le_in_gga(s(X), 0, false) → le_out_gga(s(X), 0, false)
le_in_gga(s(X), s(Y), B) → U1_gga(X, Y, B, le_in_gga(X, Y, B))
U1_gga(X, Y, B, le_out_gga(X, Y, B)) → le_out_gga(s(X), s(Y), B)
U3_gga(X, Y, Z, le_out_gga(s(Y), X, B)) → U4_gga(X, Y, Z, if_in_ggga(B, X, s(Y), Z))
if_in_ggga(false, X, s(Y), 0) → if_out_ggga(false, X, s(Y), 0)
if_in_ggga(true, X, s(Y), s(Z)) → U5_ggga(X, Y, Z, minus_in_gga(X, Y, U))
minus_in_gga(X, 0, X) → minus_out_gga(X, 0, X)
minus_in_gga(s(X), s(Y), Z) → U2_gga(X, Y, Z, minus_in_gga(X, Y, Z))
U2_gga(X, Y, Z, minus_out_gga(X, Y, Z)) → minus_out_gga(s(X), s(Y), Z)
U5_ggga(X, Y, Z, minus_out_gga(X, Y, U)) → U6_ggga(X, Y, Z, div_in_gga(U, s(Y), Z))
U6_ggga(X, Y, Z, div_out_gga(U, s(Y), Z)) → if_out_ggga(true, X, s(Y), s(Z))
U4_gga(X, Y, Z, if_out_ggga(B, X, s(Y), Z)) → div_out_gga(X, s(Y), Z)
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDP
MINUS_IN_GGA(s(X), s(Y), Z) → MINUS_IN_GGA(X, Y, Z)
div_in_gga(X, s(Y), Z) → U3_gga(X, Y, Z, le_in_gga(s(Y), X, B))
le_in_gga(0, Y, true) → le_out_gga(0, Y, true)
le_in_gga(s(X), 0, false) → le_out_gga(s(X), 0, false)
le_in_gga(s(X), s(Y), B) → U1_gga(X, Y, B, le_in_gga(X, Y, B))
U1_gga(X, Y, B, le_out_gga(X, Y, B)) → le_out_gga(s(X), s(Y), B)
U3_gga(X, Y, Z, le_out_gga(s(Y), X, B)) → U4_gga(X, Y, Z, if_in_ggga(B, X, s(Y), Z))
if_in_ggga(false, X, s(Y), 0) → if_out_ggga(false, X, s(Y), 0)
if_in_ggga(true, X, s(Y), s(Z)) → U5_ggga(X, Y, Z, minus_in_gga(X, Y, U))
minus_in_gga(X, 0, X) → minus_out_gga(X, 0, X)
minus_in_gga(s(X), s(Y), Z) → U2_gga(X, Y, Z, minus_in_gga(X, Y, Z))
U2_gga(X, Y, Z, minus_out_gga(X, Y, Z)) → minus_out_gga(s(X), s(Y), Z)
U5_ggga(X, Y, Z, minus_out_gga(X, Y, U)) → U6_ggga(X, Y, Z, div_in_gga(U, s(Y), Z))
U6_ggga(X, Y, Z, div_out_gga(U, s(Y), Z)) → if_out_ggga(true, X, s(Y), s(Z))
U4_gga(X, Y, Z, if_out_ggga(B, X, s(Y), Z)) → div_out_gga(X, s(Y), Z)
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
↳ PiDP
MINUS_IN_GGA(s(X), s(Y), Z) → MINUS_IN_GGA(X, Y, Z)
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
↳ PiDP
MINUS_IN_GGA(s(X), s(Y)) → MINUS_IN_GGA(X, Y)
From the DPs we obtained the following set of size-change graphs:
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
LE_IN_GGA(s(X), s(Y), B) → LE_IN_GGA(X, Y, B)
div_in_gga(X, s(Y), Z) → U3_gga(X, Y, Z, le_in_gga(s(Y), X, B))
le_in_gga(0, Y, true) → le_out_gga(0, Y, true)
le_in_gga(s(X), 0, false) → le_out_gga(s(X), 0, false)
le_in_gga(s(X), s(Y), B) → U1_gga(X, Y, B, le_in_gga(X, Y, B))
U1_gga(X, Y, B, le_out_gga(X, Y, B)) → le_out_gga(s(X), s(Y), B)
U3_gga(X, Y, Z, le_out_gga(s(Y), X, B)) → U4_gga(X, Y, Z, if_in_ggga(B, X, s(Y), Z))
if_in_ggga(false, X, s(Y), 0) → if_out_ggga(false, X, s(Y), 0)
if_in_ggga(true, X, s(Y), s(Z)) → U5_ggga(X, Y, Z, minus_in_gga(X, Y, U))
minus_in_gga(X, 0, X) → minus_out_gga(X, 0, X)
minus_in_gga(s(X), s(Y), Z) → U2_gga(X, Y, Z, minus_in_gga(X, Y, Z))
U2_gga(X, Y, Z, minus_out_gga(X, Y, Z)) → minus_out_gga(s(X), s(Y), Z)
U5_ggga(X, Y, Z, minus_out_gga(X, Y, U)) → U6_ggga(X, Y, Z, div_in_gga(U, s(Y), Z))
U6_ggga(X, Y, Z, div_out_gga(U, s(Y), Z)) → if_out_ggga(true, X, s(Y), s(Z))
U4_gga(X, Y, Z, if_out_ggga(B, X, s(Y), Z)) → div_out_gga(X, s(Y), Z)
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
LE_IN_GGA(s(X), s(Y), B) → LE_IN_GGA(X, Y, B)
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
LE_IN_GGA(s(X), s(Y)) → LE_IN_GGA(X, Y)
From the DPs we obtained the following set of size-change graphs:
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
U5_GGGA(X, Y, Z, minus_out_gga(X, Y, U)) → DIV_IN_GGA(U, s(Y), Z)
IF_IN_GGGA(true, X, s(Y), s(Z)) → U5_GGGA(X, Y, Z, minus_in_gga(X, Y, U))
DIV_IN_GGA(X, s(Y), Z) → U3_GGA(X, Y, Z, le_in_gga(s(Y), X, B))
U3_GGA(X, Y, Z, le_out_gga(s(Y), X, B)) → IF_IN_GGGA(B, X, s(Y), Z)
div_in_gga(X, s(Y), Z) → U3_gga(X, Y, Z, le_in_gga(s(Y), X, B))
le_in_gga(0, Y, true) → le_out_gga(0, Y, true)
le_in_gga(s(X), 0, false) → le_out_gga(s(X), 0, false)
le_in_gga(s(X), s(Y), B) → U1_gga(X, Y, B, le_in_gga(X, Y, B))
U1_gga(X, Y, B, le_out_gga(X, Y, B)) → le_out_gga(s(X), s(Y), B)
U3_gga(X, Y, Z, le_out_gga(s(Y), X, B)) → U4_gga(X, Y, Z, if_in_ggga(B, X, s(Y), Z))
if_in_ggga(false, X, s(Y), 0) → if_out_ggga(false, X, s(Y), 0)
if_in_ggga(true, X, s(Y), s(Z)) → U5_ggga(X, Y, Z, minus_in_gga(X, Y, U))
minus_in_gga(X, 0, X) → minus_out_gga(X, 0, X)
minus_in_gga(s(X), s(Y), Z) → U2_gga(X, Y, Z, minus_in_gga(X, Y, Z))
U2_gga(X, Y, Z, minus_out_gga(X, Y, Z)) → minus_out_gga(s(X), s(Y), Z)
U5_ggga(X, Y, Z, minus_out_gga(X, Y, U)) → U6_ggga(X, Y, Z, div_in_gga(U, s(Y), Z))
U6_ggga(X, Y, Z, div_out_gga(U, s(Y), Z)) → if_out_ggga(true, X, s(Y), s(Z))
U4_gga(X, Y, Z, if_out_ggga(B, X, s(Y), Z)) → div_out_gga(X, s(Y), Z)
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
U5_GGGA(X, Y, Z, minus_out_gga(X, Y, U)) → DIV_IN_GGA(U, s(Y), Z)
IF_IN_GGGA(true, X, s(Y), s(Z)) → U5_GGGA(X, Y, Z, minus_in_gga(X, Y, U))
DIV_IN_GGA(X, s(Y), Z) → U3_GGA(X, Y, Z, le_in_gga(s(Y), X, B))
U3_GGA(X, Y, Z, le_out_gga(s(Y), X, B)) → IF_IN_GGGA(B, X, s(Y), Z)
minus_in_gga(X, 0, X) → minus_out_gga(X, 0, X)
minus_in_gga(s(X), s(Y), Z) → U2_gga(X, Y, Z, minus_in_gga(X, Y, Z))
le_in_gga(s(X), 0, false) → le_out_gga(s(X), 0, false)
le_in_gga(s(X), s(Y), B) → U1_gga(X, Y, B, le_in_gga(X, Y, B))
U2_gga(X, Y, Z, minus_out_gga(X, Y, Z)) → minus_out_gga(s(X), s(Y), Z)
U1_gga(X, Y, B, le_out_gga(X, Y, B)) → le_out_gga(s(X), s(Y), B)
le_in_gga(0, Y, true) → le_out_gga(0, Y, true)
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
DIV_IN_GGA(X, s(Y)) → U3_GGA(X, Y, le_in_gga(s(Y), X))
IF_IN_GGGA(true, X, s(Y)) → U5_GGGA(X, Y, minus_in_gga(X, Y))
U5_GGGA(X, Y, minus_out_gga(X, Y, U)) → DIV_IN_GGA(U, s(Y))
U3_GGA(X, Y, le_out_gga(s(Y), X, B)) → IF_IN_GGGA(B, X, s(Y))
minus_in_gga(X, 0) → minus_out_gga(X, 0, X)
minus_in_gga(s(X), s(Y)) → U2_gga(X, Y, minus_in_gga(X, Y))
le_in_gga(s(X), 0) → le_out_gga(s(X), 0, false)
le_in_gga(s(X), s(Y)) → U1_gga(X, Y, le_in_gga(X, Y))
U2_gga(X, Y, minus_out_gga(X, Y, Z)) → minus_out_gga(s(X), s(Y), Z)
U1_gga(X, Y, le_out_gga(X, Y, B)) → le_out_gga(s(X), s(Y), B)
le_in_gga(0, Y) → le_out_gga(0, Y, true)
minus_in_gga(x0, x1)
le_in_gga(x0, x1)
U2_gga(x0, x1, x2)
U1_gga(x0, x1, x2)